
~ )  Pergamon 
Int. J. Heat Mass Transfer. Vol. 39, No. 9, pp. 1847-1857, 1996 

Copyright © 1996 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0017-9310/96 $15.00 + 0.00 

0017-9310(95)00274-X 

Thermal stability of horizontally superposed 
porous and fluid layers in a rotating system 

JONG JHY JOU 
Department of Applied Mathematics, Feng Chia University, Taichung, Taiwan 40724, 

Republic of China 

and 

KUANG YUAN KUNG and CHENG HSING HSU 
Department of Mechanical Engineering, Chung Yung University, Chung Li, Taiwan 32054, 

Republic of China 

(Received 14 December 1994 and in final form 21 July 1995) 

Abstract--The onset of thermal stabilities of the horizontally superposed systems of fluid and porous 
layers, in a rotating coordinate, is investigated. Boussinesq's approximation, local volume average technique 
and Darcy's law are employed and the slipping interface is assumed. The top and bottom boundaries of 
the system are assumed rigid and isothermal. A Sturm-Liouville's problem is derived and solved numeri- 
cally. The critical Rayleigh number R¢ or Rmc and wavenumber ac or amc are obtained for various values of 
depth ratio d. thermal conductivity ratio k/km, permeability K, proportionality constant in the slip condition 

and Taylor number Ta. The sole effect of rotation is stabilizing. The previous results with Ta = 0, using 
different methods, are compared very well. 

INTRODUCTION 

The thermal stability of the horizontally superposed 
systems of porous and fluid layers has been previously 
studied [1-5]. The present paper, including the 
rotation effect, is accomplished, using a different but 
more systematic mathematical and numerical 
approach, which can be easily modified to solve gen- 
eralized problems. 

The horizontally superposed systems of porous and 
fluid layers, between which heat and mass transfers 
occur through the interface, are related to many natu- 
ral phenomena and industrial applications. The water 
layer of pond, lake or ocean sits on a layer of mud, 
sediment, sand, sto:ae or rock. The underground water 
or petroleum may be stored inside or between porous 
layers of rock. Geophysically, there is, lying between 
the solid inner core and liquid outer core of the earth, 
a freezing porous zone which mechanism may account 
for the occurrence and variation of the geomagnetic 
field [6]. Metallurgically, a similar mechanism may 
profoundly affect the quality of metal alloy [7]. Fur- 
thermore, nuclear reactor, water cooling system and 
oil storing tank are all good examples in applica- 
tion. 

The local volume average technique [8] is applied 
to describe the global effect of the porous layer. The 
momentum equation, governing the porous layer, 
may include the frictional drag of porous boundary 
effects, -(~/K)Um.. the form drag of inertial effect, 
-pF(b3/2/K1/2)(Um'Um)I, and the viscous shear term, 

~ V 2 u m  [1,3,5,9, 10]. There are two approaches for 
describing the boundary conditions at the interface 
between the fluid and porous layers. The Brinkman's 
equation of non-slip condition suggests that velocity 
and shear stress are continuous at the interface [9, 11], 
while the slip conditions at the interface assume the 
forms [1,3-5, 12, 13]: 

Ou 

~3z -- ~/K (u-urn) 

c~v 8 
63 z -- ~K(v-Vm). 

All steady slow motions in a rotating inviscid fluid 
are necessarily two-dimensional (2D) and the Taylor- 
Proudmann theorem predicts that the sole effect of 
rotation is stationarily stabilizing [14]. 

The onset of thermal stabilities of the horizontally 
superposed systems of the fluid and porous layers, in 
a rotating system, is investigated. Three systems are 
shown in Fig. 1, case (a) a porous layer sandwiched 
between two fluid layers, case (b) a fluid layer over- 
lying a porous medium and case (c) a fluid layer sand- 
wiched between two porous layers. Boussinesq's 
approximation, local volume average technique and 
Darcy's law are employed for the momentum equa- 
tion of the porous layer. The boundary conditions, at 
the interface between the fluid and porous layers, are 
assumed slipping and the top and bottom boundaries 
are rigid and isothermal. 
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NOMENCLATURE 

a wavenumber in the fluid layer 
a m wavenumber in the porous layer 
C thermal capacity of the fluid 
C~ thermal capacity of the solid 
d depth of the fluid layer 
dm depth of the porous layer 

depth ratio, dm/d 
D differential operator 
Dr thermal diffusivity of the fluid layer 
Dfm thermal diffusivity of the porous layer, 

C~e/ Pe 
g gravity 
k thermal conductivity of the fluid layer 
km thermal conductivity of the porous 

layer 
K permeability 
Pr Prandtl number for the fluid layer, v/Df 
Pr,.. Prandtl number for the porous layer, 

v/Drm 
R Rayleigh number for the fluid layer, 

gotfld4/vDf 
Rm Rayleigh number for the porous layer, 

g~flmd4 /vOfm 
t dimensionless time 
t' time 
Ta Taylor number for the fluid layer, 

4~-,~2 d4 / v 2 

Tam Taylor number for the porous layer, 
4~')2 d4 /v 2 

T~ temperature at the bottom boundary 
T~ temperature at the top boundary 
u velocity vector in the fluid layer, 

(u, v, w) 

u m velocity vector in the porous layer, 
(Um, Vm, Wra) 

x,y, z dimensionless Cartesian coordinates 
x ' ,y ' ,  z' Cartesian coordinates. 

Greek symbols 
thermal expansion coefficient 
constant of proportionality in the slip 
condition 

c~ effective thermal diffusivity, 
[k6 + ks(1 - 6)]/[pC6 + p~Cs( l - 6)] 

fl km(T~- T.)/(kmd+kdnO 
~m k(T, -- Tu)/(kmd+ kd~) 
et (k/km)cl 

(Dr/Drm)[¢ 
( vorticity in the fluid layer 
(m vorticity in the porous layer 
0 perturbed temperature of the fluid 

layer 
0m perturbed temperature of the porous 

layer 
# dynamic viscosity 
v kinematic viscosity 
po effective thermal capacity, 

pCbl[pCb + psC~(1-6)] 
frequency of rotation 

(D, (D m frequency. 

Superscript 
' perturbation quantity. 

Subscripts 
m porous layer 
c critical value. 

PHYSICAL FORMULATION 

A set of scales (d, d, d2/Df, Df/d 2, Df/d, rid, din, d~, 
d2m/Ofm, Ofm/d2m, Ofm/dm, flmdan, d2m) for lengths x' and 
y', time t', vertical vorticity ~', velocity u', and per- 
turbed temperature 0' of the fluid layer and for lengths 
x~ and y~, time t~, vertical vorticity ~,, velocity u~, 
perturbed temperature 0m and permeability K of the 
porous layer. Also, z and Zm are defined as 
z = (z' - dm)/dand Zm = z'/dm for cases (a) and (b) and 
z = z'/d and Zm = (Z'-- d)/dm, for case (c). 

We may seek solutions in terms of normal modes 
for w', 0', ¢', wL, 0h and ~ ,  

[w', 0', ~'] = [w(z), O(z), ~(z)]" exp[oot + i(kl x + k2y)] 

[Wm, 0~n, ~n] = [Wm(Zm), 0m(Zm), ~m(Zrn)] 

• exp[com tm+ i(klmXm + k2mYm)] 

where a = x/(k~ +k~) and am = x/(k~m +kzZm) are wave- 

numbers. The linearized governing equations in 
dimensionless forms, for the fluid layer, are [1, 2, 15] 

V ' u = 0  (1) 

( D 2 - a Z - -  ~r)~ +x/ (Ta)Dw = O (2) 

(3) 

(D 2 - a  2 --¢o)O + w = 0 (4) 

and, for the porous layer, are 

V m " II m = 0 (5) 

(6) 
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Fig. 1. Physical configuration for cases (a), (b) and (c). 

D 2 W  = "]- ~ O w - -  l~OmWm~ (17) 

O~ ~--~- ~_. ~ ( ~ - -  t ~ m )  (18) 

where the - sign holds for cases (a) and (b), while 
the + sign holds for case (c). The slip conditions are 
originally proposed and experimentally proven valid 
for unidirectional flow [12, 16] and is modified to 
include the Coriolis effect. 

Either case (a) or (c) can be treated symmetrically 
by choosing the mid-plane as a symmetrical plane. 
For case (a), the mid-plane is assumed symmetrically 
rigid such that the porous layer is separated into upper 
and lower parts by a thin slab of infinitesimal thickness 
and boundary conditions become 

DmOm = 0 (19) 

D m w  m = D2mwr~ = Dm~r n -- 0. (20) 

For case (c), the mid-plane is assumed symmetrically 
free and boundary conditions become 

DO = 0 (21) 

Dw = D3w = DE~ = 0. (22) 

_ ( 1 +  OJm\ 2 
e~rm)(Om -" a2) Wm 

= Rma2mOr, + x/(Tam)Dm~m 

( D ~ - a ~ -  ~ ) O ,  +wm = 0 .  

(7) 

(8) 

The dimensionless physical parameters have the fol- 
lowing relations, 

R m = af2~t~tR 

a2m = ~ a  z 

Tam = ~ T a .  

The thermal and hydrodynamic conditions at the rigid 
boundary are 

0 = 0 (9) 

w = D w  = ~ = 0 (10)  

0 m = 0  ( l l )  

Wm := Dmwm = ~m = 0. (12) 

At the interface be'Lween the fluid and porous layers, 
the continuity of  temperature, heat flux, vertical vel- 
ocity and normal stress and, as well, the slipping con- 
ditions give rise to the interfacial conditions, 

0 = ,~t0m (13) 

O0 = DmOm (14) 

Ttw =Wm (15) 

=~13I( l+~mm)Dmwm+x/(Tam)(m] (16) 

NUMERICAL PROCEDURE 

The governing equations, which are sets of ordinary 
differential equations of order eight in the fluid layer 
and of order four in the porous layer, including equa- 
tions (1)-(4) and (5)-(8), form a Sturm-Liouville's 
problem with the Rayleigh number R or Rm as the 
eigenvalue, while keep other physical parameters d, et, 
~, K, Ta, Tam, a and am fixed. The problem is solved 
by using the Runge-Kutta-Gill 's shooting method of 
order four. 

For the fluid layer, we let 

W ~ U  1 

Dw = Dul = u2 (23) 

DEw = Du 2 = U 3 (24) 

D 3 w  = Du3 = u4 (25) 

f,O ¢.D 2 

+ Ra2us + ~/(Ta)u. (26) 
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0 ~ 1 ~  5 

DO = Du5 = u 6 (27) 

D20 = (a 2 + co)us -/,/1 (28) 

~ = U  7 

D( = DU 7 ---- U s (29) 

D 2 ( =  a 2 + ~ r  r u7--x/(Ta)u2 (30) 

and, for the porous  layer, we let 

Wm = /)l 

hmwm = DmVl = /)2 (31)  

1 com ~2] -1 
D2mwm=[Tam+(K+~rm] j 

X I ( 1  _{_ Z ) 2 a 2 m / ) l -  ( 1  + c o m \  2 - ]  
m /  ~ r m ) R m a m V 3 J  

(32) 

0 m = U 3 

DmO m = Dm/) 3 = v 4 (33) 

// 2 (Dm'~ 
D2mOm = ~a m + 7 ) v 3 - - V  l . (34)  

For  case (b), the bounda ry  condi t ions  (13)-(18),  a t  
the interface z = 0 or Zm = 1, become 

U 5 = E:tV 3 (35) 

U6 = / ) 4  (36) 

c~ 1 = ~ ( U 7 - - ( ~  (Dm'~ d ' x x 
u. + g~rm)7,/(ra)v:) (37) 

U 1 = /)1/~7 (38) 

U 3 = ~ ( U 2  -- ~ / ) 2 )  (39) 

u4-- (Na2k-~Tr)U2--4(Ta)bl7  

= . t ; I - ( ~ l K + ~ r m m ) - ( ~ l K + ~ r m m ) ' T a m ] / )  2. (40)  

At  z = 1, there are four  bounda ry  condi t ions  (9) and  
(10), 

ul = u z  =U s  = u 7  = 0  (41) 

we shall guess four more  bounda ry  condi t ions  by 
choosing 

u3 = b~ U 4 = b 2 U 6 = b 3 a n d  Us = b4 

then we have 

U = blU1 +b2U2 +b3U3 +b4U4 

where 

(42) 

(43) 

where 

V = c iV 1 -]-c2V 2 (45) 

where 

V 1 = [0, 1 , 0 , 0 ]  T 

V 2 = [ 0 , 0 , 0 , 1 ]  T. 

We use the guessing value of  R o r  Rm, assume V~, 
i = 1,2, as a set of  initial condi t ions  and  start,  again  
using the Runge--Kut ta -Gi l l ' s  shoot ing method,  f rom 
Zm = 0 and  try to ma tch  the interfacial  bounda ry  con- 
di t ions at  Zm = 1. 

In considering the s ta t ionary  state only, the bound-  
ary condi t ions  at  the interface z = 0 or  Zm = 1 tu rn  
into a matr ix  form, 

M B  = 0 

M = [re,j], i,j = 1,6 

B = [bl ,b2,b3,b4,  - -e l ,  --C2] T 

mli=U/5, i =  1,4; m l j + 4 = e t V  3, j =  1,2 

mz~ = U~, i = 1,4; m2j+4 = V~, j = 1,2 

7 r n 3 i = U S - ~ U i ,  i = 1 , 4 ;  

m3j+4 ~t x/(Ta)V~, j =  1,2 

then we have 

U 1 = [0 ,0 ,  1 , 0 , 0 , 0 , 0 , 0 ]  T 

U 2 = [ 0 , 0 , 0 ,  1 , 0 , 0 , 0 , 0 ]  T 

U 3 = [ 0 , 0 , 0 , 0 , 0 ,  1 , 0 , 0 ]  T 

U4 = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 ,  1] T. 

We may  guess a value for R o r  Rm, assume U,, i = 1,4, 
as a set of  initial condi t ions  and  start, using the 
R u n g e - K u t t a ~ i l l ' s  shoot ing method,  f rom z = 1 
and  try to ma tch  the interfacial  bounda ry  condi t ions  
a t z =  0. 
There are two bounda ry  condi t ions  (11) and  (12) at  
-7 m = 0, 

v~ = v3 = 0. (44) 

We shall guess two more  bounda ry  condi t ions  by 
choosing 

V 2 = C 1 and v4 = c2 
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m4~=U], i =  1,4; m4j+4 = V ) / ~ t ,  j =  1,2 

2 m s i = U i  ~ - d - ~ U i ,  i =  1,4; 

msj+4 -- ~ K 1 / 2  V~, j = 1,2 

m6~ = U4-3aZU 2-x / (Ta)U 7, i = 1,4 

1 / 1 ) 
m 6 j + 4 - g ~ l - - 2 - - K T a m ~ V ~ ,  j =  1,2 

and U~ is the kth element of U~ and V) is the kth 
element of gj. 

For non-trivial solutions for b~ and c~, the deter- 
minant of matrix 1N[ shall be zero and a newly guessed 
value of R or Rm is thus obtained. The Rayleigh num- 
ber R or Rm as a flmction of a or am would give rise 
to a minimum point, marking the critical state and 
corresponding to a critical Rayleigh number Re or Rm~ 
and a related critical wavenumber ac or am¢. 

For cases (a) and (c), we adopt the same procedure, 
except we need to deal with a different set of boundary 
conditions at the mid-plane as suggested in equations 
(19)-(22). 

RESULTS AND DISCUSSIONS 

The general solutions of special cases of Ta = 0 
have been solved, using the power series method [1, 
2, 17]. The ranges of physical parameters ~/, et, K, 
and Ta are chosen as 10-1°-10 l°, 10 -3 d-10d, 10 -2- 
10 -m, 10-1-10 and 0-105, respectively. Without loss 
of generality, we lel: ~, = et for simplicity. 

In the limit d ~ 0 or ~ ,  the slip and thermal bound- 
ary conditions, at the interface between the fluid and 
porous layers, can be successfully reduced to be free, 
rigid or impermeable and isothermal or with a fixed 
heat flux. As d ~ 0 and Ta = 0, the systems of cases 
(b) and (c) become single fluid layers of corresponding 
depths d and 2d with upper and lower boundary con- 
ditions isothermal ~md rigid and the critical values [Rc, 
a¢] are [1707.762, 3.12] and [106.735, 1.56] respectively 
[14, 17, 18]. The system of case (a) becomes a single 
fluid layer of depth 2d and is separated at the mid- 
plane of z = 0, where the rigid boundary is imposed 
with a fixed heat flux and the critical value [Rc, ac] is 
[1296, 2.56]. Taslim and Narusawa [1] has shown that, 
for Ta = 0,~ = l,e~ = 1 , K =  10-1°anda/= 10-2, the 
critical value/~ is 1295.9. Catton and Lienhard [13], 
replacing the porous layer by a thin solid layer, has 
shown that the critical value Rc is 1299.8. 

As d--* ~ and Ta = 0, the system becomes a single 
porous layer of depth 2din with upper and lower 
boundaries isothermal and free for case (a) and of 
depth dm with the upper boundary isothermal and free 
and the lower boundary isothermal and impermeable 
for case (b) and of depth 2dm with upper and lower 
boundaries isothermal and impermeable and the mid- 

plane, at Z m = 1, symmetrically free for case (c). For 
porous layers with upper and lower boundaries imper- 
meable, the critical values [Rmc, amc], are [39.4784, 
3.1416] for a depth dm and [9.8696, 1.5708] for a depth 
2din [19] and, for a porous layer with upper and lower 
boundaries free, the critical value is [9.804, 1.565] for 
a depth 2din [2]. 

Hydrodynamically, the thickness of a fluid or 
porous layer may act as a dominant effect on deter- 
mining the onset of thermal instability. A thicker 
(thinner) layer considered tends to damp out more 
(less) thermal disturbances and weaken (strengthen) 
the thermal coupling with its adjacent layer such that 
it becomes more (less) stabilizing and has a larger 
(smaller) critical Rayleigh number. It is obvious that 
the larger the depth ratio d, the thicker the fluid layer 
or the thinner the porous layer. Thermodynamically, 
a stronger thermal interaction between the layers does 
destabilize an individual layer. The layer with a small 
conductivity would dissipate less thermal disturbance 
and weaken the stability of itself or enhance that of the 
other. The critical Rayleigh number and wavenumber 
[Rc, ac] of a single fluid layer with upper and lower 
boundaries rigid is [1707.762, 3.12] for both bound- 
aries isothermal, [720, 0] for both boundaries with 
fixed heat flux and [1296, 2.56] for one boundary 
isothermal and the other one with a fixed heat flux. 
The fluid layer destabilizes the most for both bound- 
aries with fixed heat flux and the least for both bound- 
aries isothermal. In the limit of the thermal con- 
ductivity ratio k/km approaching to zero or infinity, 
the porous layer could be treated as being isothermal 
or with a fixed heat flux to the fluid layer, respectively. 
The critical Rayleigh number Rc is expected to 
decrease with the thermal conductivity ratio k/km. 
Non-slip effects of the rigid or impermeable boundary 
are stabilizing, while stress-free effects of the free 
boundary are destabilizing. However, effects of the 
slip boundary, depending strongly on d, K and ~, lie 
between the two. 

The critical values [Ro, ac] and [Rmc , amc], for various 
d, K and Ta, are tabulated for cases (a), (b) and (c) in 
Table 1, which gives an excellent comparison with 
the previous works [1, 2], considering Ta = 0 and 
K ~< 10 -4. For smaller values of t) less than one in all 
cases, except case (a) with the limit K --* 0, the porous 
layer becomes thicker and acts as a destabilizing factor 
to the fluid layer hydrodynamically. As d increases 
from zero and up, the fluid layer becomes more desta- 
bilizing and the critical Rayleigh number Rc decreases. 
For case (a) with the limit K ~ 0, the physical property 
of the porous layer tends to be more solid-like and 
the hydrodynamical boundary conditions become less 
important in destabilizing the system. Due to the sym- 
metrical assumptions, the thermal boundary con- 
dition at the mid-plane, varying from an adiabatic 
one, related to d = 0 (i.e. et = 0), and transitting to an 
isothermal one, related to d >> 0, prevails on deter- 
mining the onset of thermal convection. As £¢increases 
from zero and up, the fluid layer becomes less desta- 
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Table 1. Effects of K, a¢ and Ta on the critical values with ~ = 1 and ~t = 1.0d 

K = 10 4 Ta = 0 K = 10 -4 Ta = 10 3 

Case (a) Case (b) Case (c) Case (a) Case (b) Case (c) 

Rc ac /~ a~ Re ac /~ ac R~ ao Re a~ 

0 1296.681 2.552 1709.183 3.117 106.740 1.5582 1720.570 2.928 2152.135 3.485 371.848 2.595 
10 -3 1297.549 2.553 1707.764 3.116 106.652 1 .5577 1721.696 2.929 2150.555 3.484 371.672 2.594 
10 -2 1305.196 2.555 1695.423 3.107 105.869 1.5531 1731.575 2.933 2136.849 3.474 370.134 2.589 
10 -I 1367.153 2.558 1604.888 3 .027 99.324 1 .5100 1808.034 2.990 2038.485 3.392 358.087 2.540 
1 1419.579 2.761 1422.058 2 .776  78.100 1 .2687 1851.363 3.159 1852.693 3.167 329.109 2.361 

K = 10 -4 T a  m = 0 K = 10 4 T a  m = 10  3 

Case (a) Case (b) Case (c) Case (a) Case (b) Case (c) 

Rmc*K ame Rm~* K amc Rm¢* K amc Rm¢* K amc Rmc* K amc Rrnc* K amc 

10 5 .3099  1.094 24.2750 2.414 7.2098 1.526 5.3118 1.095 24.2789 2 .414  7.2101 1.526 
102 9 .7277  1.559 38.9179 3 .119 9 .5787 1.563 9.7278 1.559 38.9181 3 .119  9.5788 1.563 
10  3 9 .8594  1.570 39.4433 3 .140 9.8401 1.570 9.8594 1.570 39.4435 3 .140  9 .8402 1.570 
oo 9 .8697  1.571 39.4846 3.142 9 .8697 1.571 9.8698 1.571 39.4848 3 .142  9 .8698 1.571 

K =  10 -2 Ta= 0 K =  10 2 Ta = 10  3 

Case (a) Case (b) Case (c) Case (a) Case (b) Case (c) 

Rc ac Rc ac Rc ac Rc ac R~ ac Rc a~ 

0 1296.681 2.552 1709.183 3.117 106.740 1 . 5 5 8  1720.570 2.928 2152.135 3.485 371.848 2.595 
10  - 3  1296.506 2.551 1707.271 3.116 106.621 1 . 5 5 8  1720.446 2.927 2150.063 3.484 371.623 2.594 
10 2 1294.663 2.542 1690.482 3.105 105.563 1 . 5 5 2  1718.955 2.919 2131.904 3.473 369.635 2.589 
10 -1 1251.825 2.432 1552.770 3 .008 96.359 1 . 5 0 1  1670.871 2.800 1983.731 3.381 352.436 2.537 

1 1229.646 2.224 465.718 1.799 43.726 1 . 1 4 2  1500.111 2.500 670.691 2.156 124.724 1.344 

K = 10 2 Ta m = 0 K = 10 -2 Tam = 10  3 

Case (a) Case (b) Case (c) Case (a) Case (b) Case (c) 

~t Rm¢*K amc Rm¢*K amc Rmc*K am¢ Rmc*K am¢ Rmc*K amc Rmc*K amc 

10 8 .6089  1.464 34.6326 2 .927  7 .3795 1.506 9.0341 1.499 36.3441 2 . 9 9 5  7.7653 1.542 
102 9 .7682  1.563 39.0831 3 .126 9.5808 1 . 5 6 3  10.2531 1.600 41.0231 3.201 10.0566 1.600 
103 9 .8598  1.570 39.4450 3 .140 9.8404 1 . 5 7 0  10 .3472  1.608 41.3948 3 .216 10.3268 1.608 
oo 9 .8697  1.571 39.4846 3 .142 9 .8697 1 . 5 7 1  10 .3573 1.609 41.4353 3.218 10.3573 1.609 

bilizing instead and the critical Rayleigh number  Rc 
increases. As d approaches a unit, the physical models 
of  cases (a) and (b) become asymptotical to each other 
and the critical Rayleigh numbers  for both  cases are 
approximately equal. For  larger values of  ~t greater 
than ten, the fluid layer would become a destabilizing 
factor with respect to the porous layer instead. As d 
increases from a large value to infinity, the fluid layer, 
would become thinner and acts as a less destabilizing 
factor to the porous layer and the critical Rayleigh 
n u m b e r  R m c  is expected to increase. As d approaches 
infinity, the physical models of  cases (a), (b) and (c) 
become asymptotical to one another,  irrespective of  
the values of  K and Ta, except case (b) possesses a 
depth of  twice the thickness. F rom the above results, 
the effect o f  rota t ion on the flow is insignificant in a 
porous medium of  small permeability. Critical values 
[Re, ac] as functions of  d for various K and Ta are 

plotted in Fig. 2 for cases (a) and (b) and in Fig. 3 for 
case (c), respectively. The fluid-limits o f  d ~ 0 and the 
porous limits of  d ~ oo are obvious, as shown in Fig. 
3. Rapid variations of  the critical values [Re, ad with 

occur when 0.1 < d < 10, in which range the occur- 
rence of  onset o f  thermal convection is being transitted 
from the fluid layer type to the porous  one and has 
been studied for Ta = 0 [1]. 

As ~ increases or K decreases, the interface and the 
porous layer, tending to be more  solid-like, would 
make the system become less destabilizing and the 
critical Rayleigh number  Rc is expected to increase. 
The critical values IRe, ac], for various ~, K, e, and Ta, 
are tabulated in Table 2 and, as functions of  K for 
various ~ and Ta, are shown in Fig. 4 for case (a). It 
shows that, for K ~< 10 -6 and Ta = 0, variations o f  
the critical Rayleigh number  R~ with K and ~ are 
insignificant and a solid limit, as K ~ 0, is obtained. 
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For  10 -6 < K < 1 0  - 4  and Ta = 0, variations of the 
critical Rayleigh n u m b e r / ~  with ~ are not  obvious, 
when 1 ~< ~ ~< 10. The combined effects of a smaller 
and a larger K give: rise to a more destabilizing state to 
the fluid layer and thus a decreasing critical Rayleigh 
number.  Variations of the critical wavenumber ac with 
either K or ~ are insensitively decreasing as well for 
K < 10 -4. Also from Fig. 2, variations of the critical 
Rayleigh number  R~ with the permeability K are neg- 

ligible for d < 10 _4 and irrespective of Ta. However, 
for d > 10 -2, case (b) shows the most obvious vari- 
ation of all. 

The  physical parameter at is related to the depth 
ratio d and the conductivity ratio k/k  m. F o r  k/km = 1 
and at = d, the sole effect of  the depth ratio d has been 
discussed previously. We would merely concentrate 
on the effect of thermal conductivity ratio k/km. Figure 
5 shows, for case (b), the variations of the critical 
value [Re, ac] with K, for various values of at and Ta. 
For  d = 1 and at ~ 0, the porous layer is assumed to 
be perfectly conductive and the interfacial condit ion is 
isothermal. As at is increased, the thermal interaction 
between the fluid and porous layers, due to a more 
destabilizing temperature profile, is enhanced and the 
critical Rayleigh number  Rc decreases. As e, ~ ~ ,  the 
porous layer is assumed to be perfectly adiabatic and 
the interface is subject to a fixed heat flux. The critical 
values [Re, ac] for case (c) are tabulated, for various 
values of d, k/km and at, in Table 3, which is compared 
very well within a small relative error with the previous 
works [1, 13], and plotted, as functions of et for various 
values of ~ and Ta, in Fig. 6. Significant variations of 
the critical values [Re, ac] with at, for 1 < at < 10, and 
with ~, for 0.1 < ~ < l, do occur. For  d = 1, Fig. 6 
shows the limiting values of the critical Rayleigh num- 
ber /~  for both cases of isothermal condit ion and 
constant heat flux condition at the interface. For  vary- 
ing d, Table 3 still illustrates this kind of trend, 
especially when the conductivity ratio k/km becomes 
large. A similar discussion with the relation RJRmc = 
1/at 2 ~ would conclude that the critical Rayleigh num- 
ber Rmc increases as at is increased. 

Taylor -Proudman theorem predicts that all steady 
slow motions of inviscid flows in a rotating system are 
necessarily two-dimensional [14]. The sole effect of  
rotation suppresses the onset of  thermal convection 
and raise the stability of the system, the critical Ray- 
leigh numbers R~ and Rmc are expected to increase 
with Taylor number  Ta. Figures 4-8 have shown such 
trends. 

In the limit d ~ 0  or ooand Ta = 103, the system 
may become a single fluid layer of depth d with the 
critical value [Re, a~] being [2151.7, 3.50] [14] or a 
single porous layer of depth dm with the critical value 
[ R m c  , amc  ] being [40.08, 3.20] for K = 10 -4 [ 1 5 ] ,  which 
case does include an extra viscous shear term. 

Variations of the critical values [Re, ad with Ta, 
for various values of d and K = 10 -4 and ~ -= 1 are 
plotted in Fig. 7 for case (b). The critical values [R~, 
a¢], for d ~< 1, increases with Ta slowly for Ta < 102 
and rapidly for Ta > 103. As the Taylor number  Ta 
goes far beyond 104 , this increasing trend becomes 
irrespective of the depth ratio d. 

Variations of the critical values [R~, a~] with Ta, for 
various K and d = 1, are plotted in Fig. 8 for case (c). 
The critical values [R~, ad, strongly affected by Taylor 
number  Ta when Ta > 102, increase with Ta slightly 
for K > 10 -4, in which range the porous layer tends 
to be more fluid-like, and significantly for K < 1 0  - 4 ,  
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Table 2. Effects of ~, e~ and K on the critical values with £/= 1.0 

R~ Ta = 0 
[ac] Case (a) Case (b) Case (c) 

e~ K =  10 -4 K =  10 "~ K =  10 4 K =  10 -m K =  10 4 K =  10 -L° 

0.1 1 1171.3471 1492.4444 1174.5685 1493.9439 61.1855 81.3471 
[2.601] [2.810] [2.622] [2.819] [1.197] [1.280] 

1 0.1 1606.9933 1669.1169 1607.4334 1669.4333 98.6608 102.1779 
[3.034] [3.0611 [3.0371 [3.0631 [1.503] [1.514] 

1 1419,5799 1492.9826 1422.0583 1494.4811 78.1005 81.4655 
[2.761] [2.8] I] [2.776] [2,820] [1,269] [I .280] 

I0 222.3201 1330.0916 I]50.5234 1330.7879 53.7797 57.3]60 
[0.215] [2,592] [2.300] [2.597] [0.830] [0.844] 

I0 1 1467.1606 1493.0365 1469.5411 1494.5349 80.7437 81.4683 
[2.785] [2.8] I] [2,799] [2.820] [1.278] [].280] 

R~ Ta = 103 
[aJ Case (a) Case (b) Case (c) 

et K =  10 -4 K = 10 -1° K = 10 4 K = 10 m K = 10 4 K = 10 ,o 

0.1 l 1649.9332 1931.8536 1651.4188 1932.5689 320.8990 338.1897 
[3.100] [3.204] [3.109] [3.208] [2.430] [2.383] 

1 0.1 2045.7903 2112.0399 2046.0205 2112.1908 358.1496 365.9085 
[3.415] [3.435] [3.416] [3.436] [2.551] [2.562] 

1 1851.3631 1932.4048 1852.6932 1933.1198 329.1095 338.2444 
[3.159] [3.204] [3.167] [3.208] [2.361] [2.383] 

10 247.5715 1757.8829 2793.4069 1758.2407 289.1366 307.6543 
[0.383] [2.975] [2.684] [2.978] [1.904] [2.097] 

10 1 1898.5318 1932.4600 1899.8244 1933.1749 333.5916 338.2498 
[3.174] [3.204] [3.182] [3.208] [2.363] [2.383] 
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Fig. 4. Variations of  critical conditions (R~, ac) with K for 
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Fig. 5. Variations of critical conditions (Re, ac) with K for 
case (b) with d = 1 and ~ = 1. 

in  wh ich  the  p o r o u s  layer  t ends  to be  m o r e  solid-l ike.  
F igu re  5 does  dep ic t  such  a result ,  especial ly  fo r  la rge  
values  o f  et. 

Whi l e  the  cri t ical  va lues  [R~c, amc] increase  very  
insens i t ive ly  wi th  Ta for  ~) > 10, as s h o w n  in T a b l e  l. 

Effects o f  Ta o n  the  onse t  o f  t h e r m a l  ins tab i l i ty  ins ide  
a p o r o u s  layer  b e c o m e  less i m p o r t a n t .  

Cr i t ica l  va lues  [Pc, ac] a n d  [Rmc, a~,c] as f u n c t i o n s  o f  
d, for  Ta = 103, a re  p l o t t e d  in Fig. 3 for  case  (c). The  
f luid- l imits  o f  d ~ 0 a n d  the  p o r o u s  l imits  o f  d--* oo 
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Table 3. Comparison of results of this study with previous works for case (a) with ~ = 1.0, 
K = 10 -I° and e t = (k/km)cl 
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k/km 
Ta = 0 0.2 1.0 5.0 100 

Catton-Lienhard 1345.3 1312.6 1305.4 1299.8 
0.01 Taslim-Narusawa 1338.4 1304.9 1297.6 1295.9 

This study 1339.5 1305.9 1298.5 1296.8 
Catton-Lienhard 1527.9 1378.5 1318.4 1297.5 

0.1 Taslim-Narusawa 1525.7 1372.9 1313.4 1296.7 
This study 1526.9 1373.9 1314.3 1297.6 
Catton-Lienhard 1634.9 1492.2 1358.2 1299,6 

1.0 Taslim-Narusawa 1634.6 1491.8 1357.8 1299.3 
This study 1635.9 1492.9 1358.8 1300.2 

k/km 
Ta = 103 0.2 1.0 5.0 100 

0.01 This study 1774.269 1732.296 1722.959 1720.691 
[2.9585] [2.9337] [2.9293] [2.9283] 

0.1 This study 1980.793 1815.285 1742.889 1721.690 
[3.2014] [2.9945] [2.9401] [2.9288] 

1.0 This study 2078.660 1932.405 1789.501 1724.543 
[3.3933] [3.2038] [3.0160] [2.9333] 
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Fig. 6. Variations of critical conditions (R~, ac) with et for 
case (c) with K = 10 -4 and d = 1. 
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are obvious.  Rapid  var ia t ions  of  the critical values 
[Re, ac] or [Rmc, am,] with  d occur when  0.1 < d < 10, 
in which range the occurrence of  onset  of  thermal  
convect ion  is being t ransi t ted f rom the fluid layer type 
to the porous  one and  this case has  been studied for 
Ta = 0 [1]. Table  4 shows tha t  this k ind of  t ransi t ion,  
when  Ta = 103, occurs at  d = 3.2, a t  which dep th  rat io  
the onset  of  thermal  instabilit ies could take place 
inside b o t h  fluid and  porous  layers. 

CONCLUSION 

The onset  of  the rmal  stabilities of  the hor izontal ly  
superposed systems of  fluid and  porous  layers, in a 
ro ta t ing  coordinate ,  is investigated. The R u n g e -  
Ku t t a -G i l l ' s  shoot ing method,  which can  be easily 
modified to solve general  problems,  is adopted  and  
the results are compared  very well wi th  previous 
works,  using the power  method.  The  ma in  conclusions 
a r e :  
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Table 4. Variation of critical values with d for case (c) with 
Ta = 103, K = 1 0  - 4 ,  ~ = 1.0 and ~1 = 1.0d 

~l R c a¢ cl Rm¢* K a~c 

10 : 370.134 [2.589] 3.2 3.011 [6.735] 
10 -1 358.087 [2.540] 5.0 5.410 [1.503] 

1.0 329.109 [2.361] 10 7.759 [1.545] 
2.0 313.310 [2.282] 20 14.706 [1.949] 
3.2 287.123 [2.105] 30 36.674 [2.685] 

(1) For  a smaller value of  d, except case (a) with  the 
limit K ~ 0, the porous  layer becomes a destabil izing 
factor  to the fluid layer hydrodynamical ly .  As 
increases, the critical value R¢ decreases. Fo r  case (a) 
with  the limit K ~ 0, the effects of  thermal  bounda ry  
condi t ions  are d o m i n a n t  on  de termining  the onset  
of  thermal  convect ion and  critical value Rc increases 
instead. Fo r  a larger value of  d, the fluid layer becomes 
a destabilizing factor  to the porous  layer and  the criti- 
cal value Rmc increases with  the dep th  ra t io  d. 

(2) As ~ increases or Kdecreases,  the slip bounda ry  
condi t ion  and  the porous  layer, deviat ing themselves 
f rom the free ones, would make  the system become less 
destabilizing. F o r  K >/ 10 -6 and  Ta = 0, var ia t ions  of  
the critical Rayleigh n u m b e r  R¢ with ~ are no t  obvious  
f o r l  ~ < ~ <  10. 

(3) Fo r  fixed values of  d, as et ~ 0, the porous  layer 
is assumed to be perfectly conduct ive and  the inter- 
facial condi t ion  is isothermal.  As et is increased, the 
thermal  in teract ion between the fluid and  porous  

layers, due to a more  destabil izing tempera ture  profile, 
is enhanced  and  the critical Rayleigh n u m b e r  R¢ 
decreases. As et ~ ~ ,  the porous  layer is assumed to 
be perfectly adiabat ic  and  the interface is subject to a 
fixed heat  flux. Significant var ia t ions  of  the critical 
values [Re, ac], for case (c), wi th  e, for 1 < ~t < 10, and  
with ~, for 0.1 < ~ < 1, do occur. 

(4) The T a y l o r - P r o u d m a n  theorem predicts tha t  
all steady slow mot ions  of  inviscid flows in a ro ta t ing  
system are necessarily 2D. The sole effect of  ro ta t ion  
suppresses the onset  of  thermal  convect ion and  raises 
the stability of  the system, the critical Rayleigh num-  
bers Re and  Rmc are expected to increase with Taylor  
n u m b e r  Ta. 
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